A ug 2 00 8 Low regularity global well - posedness for the two - dimensional Zakharov system ∗

نویسندگان

  • Daoyuan Fang
  • Sijia Zhong
چکیده

The two-dimensional Zakharov system is shown to have a unique global solution for data without finite energy if the L-norm of the Schrödinger part is small enough. The proof uses a refined I-method originally initiated by Colliander, Keel, Staffilani, Takaoka and Tao. A polynomial growth bound for the solution is also given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low Regularity Global Well-posedness for the Zakharov and Klein-gordon-schrödinger Systems

We prove low-regularity global well-posedness for the 1d Zakharov system and 3d Klein-Gordon-Schrödinger system, which are systems in two variables u : Rx × Rt → C and n : Rx × Rt → R. The Zakharov system is known to be locally well-posed in (u, n) ∈ L2×H−1/2 and the Klein-Gordon-Schrödinger system is known to be locally well-posed in (u, n) ∈ L × L. Here, we show that the Zakharov and Klein-Go...

متن کامل

. A P ] 8 M ay 2 00 6 LOW - REGULARITY SCHRÖDINGER MAPS , II : GLOBAL WELL - POSEDNESS IN DIMENSIONS d ≥ 3

In dimensions d ≥ 3, we prove that the Schrödinger map initialvalue problem { ∂ts = s×∆xs on R × R; s(0) = s0 is globally well-posed for small data s0 in the critical Besov spaces Ḃ d/2 Q (R ; S), Q ∈ S.

متن کامل

m at h . A P ] 2 3 Fe b 20 07 GLOBAL WELL - POSEDNESS AND POLYNOMIAL BOUNDS FOR THE DEFOCUSING L 2 - CRITICAL NONLINEAR SCHRÖDINGER EQUATION IN R

We prove global well-posedness for low regularity data for the one dimensional quintic defocusing nonlinear Schrödinger equation. Precisely we show that a unique and global solution exists for initial data in the Sobolev space H(R) for any s > 5 14 . This improves the result in [22], where global well-posedness was established for any s > 4 9 . We use the I-method to take advantage of the conse...

متن کامل

Well-posedness for the 1d Zakharov-rubenchik System

Local and global well-posedness results are established for the initial value problem associated to the 1D Zakharov-Rubenchik system. We show that our results are sharp in some situations by proving Ill-posedness results otherwise. The global results allow us to study the norm growth of solutions corresponding to the Schrödinger equation term. We use ideas recently introduced to study the class...

متن کامل

ar X iv : 0 90 4 . 28 19 v 1 [ m at h . A P ] 1 8 A pr 2 00 9 PERIODIC STOCHASTIC KORTEWEG - DE VRIES EQUATION

We prove the local well-posedness of the periodic stochastic Korteweg-de Vries equation with the additive space-time white noise. In order to treat low regularity of the white noise in space, we consider the Cauchy problem in the Besov-type space bbp,∞(T) for s = − 1 2 +, p = 2+ such that sp < −1. In establishing the local well-posedness, we use a variant of the Bourgain space with a weight fol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009